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Abstract:

Improving the electrical efficiency of deep-ultraviolet
light emitting diodes (DUV- LEDs) based on the
ultrawide bandgap material AlGaN is important for
applications in disinfection, sensing, and lithography.
Reducing the contact resistance of the device is
crucial to improving the electrical efficiency. For high-
performance electronic and optoelectronic devices,
specific contact resistivities (p,) on the order of 107°-107
Qcm? are typically required. However, the ultrawide
bandgap nature of AlGaN alloys poses intrinsic
difficulties in achieving such low-resistance contacts.
In this study, we investigate the co- optimization of
p-InGaN and n-AlGaN contacts of DUV LEDs in
monolithic integration.

These diodes are grown pseudomorphically on bulk AIN
substrates by molecular beam epitaxy (MBE), resulting
in low threading dislocation density and allowing for
internal quantum efficiency (IQE), carrier injection
efficiency (CIE), and lifetime of devices. The goal of
this work is towards an electrically-injected DUV laser

a)

g

diode grown by MBE.

Summary of Research:
We find that using a thin In, Ga_ ,.N cap is effective

in achieving ohmic p-cont;é)‘gs v319t3h specific contact
resistivity of 3.10x10° Qcm? Upon monolithic
integration of p- and n-contacts for DUV LEDs, we find
that the high temperature annealing of 800 °C required
for the formation of low resistance contacts to n-AlGaN
severely degrades the p-InGaN layer, thereby reducing
the hole concentration and increasing the specific contact
resistivity to 9.72x10™* Qcm?. Depositing a SiO, cap by
plasma-enhanced atomic layer deposition (PE-ALD)
prior to high temperature n-contact annealing restores
the low p-contact resistivity, enabling simultaneous
low-resistance p- and n-contacts.

DUV-LEDs emitting at 268 nm fabricated with the SiO,
technique exhibit a 3.5 V reduction in operating voltage
at a current level of 400 A/cm? and 1.9 mQcm? decrease
in differential ON-resistance. This study highlights a
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Figurel: (a) Heterostructure of the DUV LED samples used for this contact annealing temperature-dependent study. (b) Specific contact
resistivity of n- and p-contact vs n- contact annealing temperature. P-contacts were subsequently annealed at 450 °C. All resistance values
were extracted at 1 mA from CTLM-1V measurement. (c) Sheet resistance vs n-contact annealing temperature.
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scalable route to high-performance, high-Al-content

bipolar AlGaN devices.

Conclusions and

We are continuing to reduce the contact resistance of
the p- and n-contacts through different metallization
annealing conditions, metal stack, and acid treatment.

1. Epitaxial growth

Future Steps:

2. Mesa formation
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We would also like to experiment with different capping
materials like SiN and AIN to further reduce the

degradation of p-InGaN during n-contact anneal.
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3. p-InGaN surface protection:
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4. Cathode formation:
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Figure 2: Schematic diagram illustrating the fabrication process of an LED with the SiO2 capping technique.
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Figure 3: (a) CTLM-1V curves comparison of p-contact without undergoing n contact anneal, after undergoing n-contact anneal with SiO2
cap, and after undergoing n-contact anneal without SiO2 cap. IVs are plotted for 2 um spacing. (b) Resistance vs metal electrode spacings for
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Figure 4: (a) Room temperature J-V characteristics of two LEDs, one with SiO2 capping method and one without. The diferential
ON- resistance was extracted at 4004/cm2. (b) 1V from batch test of LEDs with and without SiO2 capping. (c) Room temperature
electroluminescence of an LED with the SiO2 capping method. Inset shows the microscopy image of a fabricated LED.
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