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Abstract:

Synthesis schemes targeting specific nanoscale polymer
architectures have the potential to advance the efficacy
of polymer materials for applications in biomaterials
and beyond as tunable material solutions [1]. In our
current work, we expand previous investigations of the
synthesis pathway of divinylbenzene (DVB) via initiated
chemical vapor deposition (iCVD) templated in nematic
liquid crystals to begin to explore polymerization
with alternative monomers and process conditions.
Understanding the effect of tuning the precursor
concentrations and substrate properties on the resultant
polymer architectures will empower future efforts to
produce shape-controlled polymer particles within this

synthesis pathway.

Summary of the Research:

Many existing methods to control polymer microparticle
architectures involve physical manipulations, which are
difficult to scale [1]. Initiated chemical vapor deposition
(iICVD) within a liquid crystal (LC) template provides
a pathway to construct polymer nanoscale and micro-
particles with specific architectures achievable based
on the reaction conditions [2]. In iCVD, the polymer
precursors—the monomer and initiator—are delivered
continuously in vapor phase into a chamber alongside an
inert carrier gas. A superheated filament radicalizes the
initiator to allow the polymerization reaction to proceed.
As the monomer and initiator molecules adsorb onto the
substrate, free-radical polymerization occurs. iCVD
eliminates the need for solvent-mediated reactions,
which can result in impure polymer products, impacting
the functionality and applicability of functionalized
polymeric materials [3].

The innovation that inspired this project is the use
of a liquid crystal (E7, a commodity liquid crystal
containing a eutectic mixture of cyanobiphenyls
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and terphenyls) as a templating material rather than
an isotropic (disordered) liquid. Liquid crystals are
a phase of matter in between liquid and crystalline
solids that acquire exciting and useful properties from
heightened orientational and positional ordering of their
constituent molecular subunits [5]. Researchers have
taken advantage of the molecular level organization
in these materials in iICVD systems to guide the
polymerization process and control the particles’ final
conformation [2]. The identity of the substrate on
which the film is prepared controls the properties and
orientation of the mesogens within the LC thin-film.
At the LC-air interface E7 adopts a perpendicular
anchoring scheme while at the interface with untreated
glass the mesogens will be anchored planarly in multi-
domains. Chemical treatments octadecyltrichlorosilane
(OTS) and Dimethyloctadecyl(3-(trimethoxysilyl)
propyl)ammonium chloride (DMOAP) result in planar
anchoring at the LC-substrate surface as well as inducing
a single homeotropic domain across the LC film [1].
Representative illustrations of the different anchoring
conditions are included in Figure 1. These treatment
schemes offer the researcher an additional layer of
control to the polymer template during the reaction. In
addition to comparing polymer products on substrates
with homolayers of OTS, and DMOAP treatments,
gradient substrates prepared by the Genzer group at
NC State—gradients of OTS to glass, DMOAP to glass,
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Figure 1: Illustration of anchoring effects on E7 for different
substrate types.
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and OTS to DMOAP counter gradients—were reacted to
provide a comparison of both anchoring condition and
the impact of anchoring strength and surface energy [5].
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Figure 2: Schematic of in-lab set up for iCVD. Adapted from [1]:
Jain, A. Science Advances 2024, 10 (45).
https://doiorg/10.1126sciadv.adp5573.
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Our experimental system, illustrated in Figure 2, reacts
with controlled amounts of vaporized monomer and
initiator tert-butyl peroxide (TBPO). The reaction takes
place in a TEM grid containing nematic phase liquid
crystal films (E7, TNI=60-63°C) mounted on a range of
untreated and treated substrates. The chamber pressure
is regulated to 150 mTorr and the sample stage is
maintained at 20 °C. The reaction process is monitored
in situ by a long focal length set up of a Keyence VHX
970F microscope and after reaction progress has been
halted by SEM, confocal imaging, and microscopy on
an Olympus BX41 microscope equipped with 4x and
20x objectives. Reactions were carried out at both high
initiator to monomer ratios (~0.7 Monomer/Initiator)
and low ratios (~0.15) at times ranging from 75 to 140
minutes. Critical point drying was employed to remove
liquid crystal films while preserving the particles formed
for imaging by SEM [1].

Conclusion and Future Steps:

Optical micrographs of films prepared on glass and
homolayers of OTS and DMOAP showed that arrays of
polymer nanospheres formed with greater regularity and
covered a higher percentage of the available film area
on DMOAP and glass than the OTS substrate (Figure
3). Analysis of particle sizes showed little significant
variation in particle diameter between homolayer
substrates: an observation confirmed with SEM imaging
of representative polymer particles and particle clusters
(Figure 4). Reactions performed on gradient films
mirror this trend, with the sections of the film treated
with DMOAP displaying a greater proportion of particle
arrays than OTS. Analysis of reactions on the OTS to
DMOAP gradient film further confirmed this trend,
indicating that the anchoring orientation did not impact
the formation of particle arrays. An implication of this
finding is that the polymerization process occurs in the
bulk LC or at the LC-air interface rather than on the LC-
substrate interface. This hypothesis was supported by
confocal microscopy which revealed that the nanosphere
particles were positioned along a single focal plane
within the LC bulk.

Determining the location of particle formation during
the initiation and growth processes deepens knowledge
of the dynamics of the polymerization reaction and,
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Figure 3 (Left) : White balanced optical micrographs showing the
polymer products formed from high initiator to monomer ratio
conditions (17.1 mTorr P(TBPO)/25.1 mTorr P(DVB)) (A-C) and
low initiator to monomer ratio conditions (10.6 mTorr P(TBPO)/69
mTorr P(DVB)) (D-F). The DMOAP treated films (B,E) create more
regular particle arrays than the untreated glass films (4,D) or the
OTS treated films (C,F).

Figure 4 (Right): SEM images showing polymer nanoparticles. Low
magnification (A) and high magnification are shown (B) alongside
measurements of the range of particle diameters are also displayed
(C. D).

in turn, will offer researchers greater insight into
controlling the polymer architectures formed within
the LC films. Future work will bring in more advanced
imaging and characterization techniques,
AFM and advanced confocal microscopy, to detail this
polymerization process and allow our understanding to

empower iCVD studies of other monomer systems.
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