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Abstract:

Resistive crossbar arrays co-locate memory and analog
computation to overcome the von Neumann “memory
wall,” where data movement can dominate energy
costs. By encoding weights in multi-level resistive
cells and performing parallel dot-product operations
directly within a 16 x 16 array fabricated at the Cornell
Nanoscale Facility, we demonstrate up to 60.9 TOPS/W
and four decades of linear dynamic range [1]. This in-
memory computing platform offers a compelling path
toward dramatically lower-power Al inference, as well
as efficient signal and image processing.

Summary of Research:

The explosive growth of Al services is driving data-
center electricity demand toward unsustainable levels.
The International Energy Agency projects global data-
center energy use to exceed 945 TWh by 2030—more
than double current levels—and U.S. data centers,
already consuming 4.4 % of national electricity in 2023,
may account for up to 12 % by 2028 [4][5]. Even a
single Artificial Intelligence query carries a measurable
footprint: a typical ChatGPT interaction consumes
roughly 0.3 Wh, equivalent to running an LED bulb for
several minutes [6].

Conventional von Neumann architectures exacerbate
this burden via the “memory wall,” in which moving
a 64-bit word from Dynamic Random Access Memory
(DRAM) to the Central processing unit (CPU) costs on
the order of 1,000 pJ—about 50x the energy of a 64-
bit floating-point add [7]. Across real workloads, data
transfers can account for 60—70 % of total system energy,
severely limiting both performance and efficiency.

Resistive crossbar arrays address this challenge by
performing matrix-vector multiplications in situ:
voltages applied to row lines induce column currents
proportional to conductance-encoded weights, realizing
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massively parallel dot products in one step. Hardware
demonstrations include 60.9 TOPS/W for binary neural
inference in oxide-based devices [1], 405 TOPS/W
in magnetoresistive prototypes at 0.8 V [2], and 3.6
TOPS/W in designs with nonlinear Analog Digital
Converters (ADCs) for specialized preprocessing [3].

Since the first memristor crossbar proposal in 2008, the
field has advanced rapidly: writes as low as 6 fJ per cell
for sparse coding [8], 24 TOPS/W in XNOR-RRAM
arrays monolithically integrated with 90 nm CMOS
[9], and area efficiencies exceeding 130 TOPS/mm?
alongside the aforementioned TOPS/W milestones [2].

In our work, we aim to fabricate resistive crossbar arrays
with Al model encoded on them to save energy for Al
computing. As a first step, we have fabricated 16 x 16
arrays using a CMOS-compatible process and measured
their analog performance at Cornell Nanoscale Facility.
By encoding image-processing kernels as conductance
matrices and feeding input voltages corresponding
to grayscale images, we obtained output currents that
reproduce digital convolution outputs with high fidelity
(Fig. 4), validating hardware-in-the-loop processing as
a viable digital alternative.

Conclusions and Future Steps:

We have shown that resistor-based crossbar arrays
can achieve state-of-the-art energy efficiency for low-
precision Al and image-processing tasks. To scale this
approach, we plan to:

- Increase array dimensions from 16 x 16 to 128 x 128,
enabling higher-resolution kernels and larger neural-
network layers.

- Expand application domains to voice-signal processing,
discrete Fourier transforms and Al computing,
leveraging the same in-memory dot-product primitive.

These developments will bring in-memory computing
closer to deployment in edge Al accelerators and high-
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Figure 1: Structure of resistive crossbar arrays.
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Figure 4: Digital and Hardware processing results.
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throughput signal-processing hardware.
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