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Abstract:

This work presents a unique design method and
optimization of high frequency magnetic patterns with
controllable effective permeability and ferromagnetic
resonance behavior for integrated microwave devices.
Thin-film micro-patterned FeCo array with initial
permeability of 42.7 has been fabricated to achieve a
high FMR of 18.1 GHz. Independent control of magnetic
properties of the pattern array has been realized by
changing pattern spacing, showing a FMR tuning range
of 2.20 GHz, with little change in effective permeability.
Noise suppression and inductance enhancement at high
frequencies (> 10 GHz) have been demonstrated for
RF applications by integrating the proposed magnetic
pattern array with coplanar waveguides (CPW). Our
method shows a high degree of freedom and flexibility
for designing high frequency integrated magnetic
microwave components.

Summary of Research:

Fast growing demand of higher data rate, low latency,
high quality of service in wireless communication
systems calls for RF front-end devices that are frequency
agile, miniaturized and multifunctional. Novel materials,
structures and technologies have been explored to
improve performance and bring new functionality for RF
devices. Integrating high-performance novel magnetic
materials into on-chip RF devices shows promising
results in enhancing inductance, miniaturizing devices,
suppressing interference and achieving non-reciprocity
and tunability. Previous works have demonstrated the
application of integrated magnetic materials in inductors,
isolators, antennas, filters, and noise suppressors.

However, integrating magnetic materials for high
frequency applications is particularly challenging.
Limited by the relatively low ferromagnetic resonance
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(FMR) frequency, radio-frequency (RF) devices
(e.g., on-chip inductors) integrated with common
ferromagnetic materials consistently operate only at
sub-GHz or up to a few GHz. While the FMR frequency
can be increased by applying bias magnetic fields, this
approach reduces the permeability of magnetic materials
due to an intrinsic FMR-permeability tradeoff, therefore
limiting the device performance. In addition, integrating
large, localized bias magnetic fields with monolithic
microwave circuits is highly impractical. Finally, the
high loss of most ferromagnetic materials, especially
near FMR frequency presents additional challenges for
their device integration. Thus, novel magnetic materials
with controllable high frequency characteristics are
highly desired in microwave applications.

Previous work has shown promising results of improving
FMR to a few GHz by patterning ferromagnetic thin
films, yet no control of magnetic properties or design
optimization of the magnetic pattern array has been
proposed. In this work, we dramatically increase the
FMR frequency of ferromagnetic patterns at zero field
bias to 18.1 GHz, while maintaining a high broadband
permeability of 42.7. An analytical model has been
established to independently control and optimize the
magnetic properties (. and p ) of the patterned array
by changing pattern spacing along two orthogonal axes.
The proposed magnetic pattern array was integrated with
CPWs to demonstrate its high frequency RF application
for noise suppression and inductance enhancement. Our
optimization approach allows for the facile design of
integrated microwave magnetic components.

Conclusions and Future Steps:

In this work, we demonstrate design, tuning and
optimization of patterned ferromagnetic thin film
arrays for high frequency MMIC applications. The
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FMR frequency of high permeability ferromagnetic
patterns was increased to around 18 GHz (Ku band)
for the first time. An analytical model was established,
and a design method is proposed to independently tune
the FMR, effective permeability of the magnet pattern
array for optimal integrated device operation. The
proposed pattern arrays were integrated with CPWs to
experimentally demonstrate their RF applications as
noise suppressors and inductors. Our method is highly
versatile and provides a high degree of freedom for
designing high frequency tunable magnetic properties
for integrated microwave systems. In the future, we
will implement a magnetic fully integrated inductor that
works that high frequencies, and achieve tunability via
magnetoelectric coupling.
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Fig. 1. Magnetic characterization M-H loops (left) of Fe65Co35
compared with Ni81Fel9 and frequency dependent permeability
(right) calculated from the Landau-Lifshitz-Gilbert (LLG) model.
The solid line and dash line represent the real part and imaginary
part, respectively.
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Fig. 2. Design flowchart for high frequency ferromagnetic patterns
with controllable magnetic properties.
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Fig. 3. Fabrication process and microscopic image of the
Fe65Co035 magnet patterned CPW.
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Fig. 4. Measured S12 parameters of noise suppressors when
changing gaps of magnets along the (a) longitudinal (b) horizontal
direction.
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