Isotropic Plasma ALE of Nitride Semiconductors

CNF Project Number: 280019

Principal Investigator(s): Huili Grace Xing

User(s): Rafael Panagiotopoulos

Affiliation(s): Department of Materials Science and Engineering

Primary Source(s) of Research Funding: SUPREME

Contact: grace.xing@cornell.edu

website: https://jena-xing.engineering.cornell.edu/

Primary CNF Tools Used: Takachi ALE

Abstract:

This study demonstrates the successful atomic layer etching of aluminum nitride and gallium nitride using sequential exposures to SF₆ plasma for surface fluorination, followed by Cl₂/BCl₃ plasma to remove the altered layer at 100 °C. We investigated the etch rates, the self-limiting behavior of the reactions, and their combined effect, aiming to better understand the underlying etching mechanism. A range of analytical tools was employed, including in-situ spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

Summary of Research:

Gallium nitride (GaN) and aluminum nitride (AlN), both belonging to the III–V semiconductor group, play a pivotal role in modern electronic and photonic technologies. Their wide bandgaps, strong thermal stability, and intrinsic piezoelectric properties make them particularly suitable for fabricating high electron mobility transistors (HEMTs), which are commonly used in radio-frequency (RF) and power electronics applications¹–³. Additionally, due to their outstanding optical characteristics, GaN and AlN are also emerging as key materials for photonic integrated circuits and light-emitting diodes (LEDs)^{4,5}.

As device architectures continue to evolve in complexity and scale, there is a growing demand for more sophisticated processing techniques. One such advancement is the development of enhancement-mode (E-mode) HEMTs, which are especially desirable for applications such as power conversion and industrial power systems^{6,7}. The fabrication of efficient and robust E-mode HEMTs often requires the formation of recess gate structures^{8,9}. However, traditional dry etching methods have notable limitations, often inducing damage to the surface and the two-dimensional

electron gas (2DEG), which negatively impacts device performance¹⁰. To address these challenges in next-generation devices, atomic layer etching (ALE) has emerged as a promising alternative to conventional etching techniques¹¹, ¹².

ALE operates on the principle of dividing the etching process into a series of self-limiting, sequential steps. This separation allows for precise control over the formation and transport of reactive species, enabling improved process uniformity and avoiding the surface damage typically associated with reactive ion etching. The ALE cycle generally comprises two distinct phases: a surface modification step that lowers the material's surface binding energy, followed by a removal step¹³, ¹⁴.

Utilizing SF6 plasma for surface modification and Cl₂/BCl₃ plasma for removal, we achieved etch rates of 4.4 Å/cycle and 5.7 Å/cycle for AlN and GaN respectively, which correspond approximately to one unit cell per cycle. Etch rates were monitored with in situ ellipsometry as seen in Figure 1. This approach displayed very controlled results, as well as selflimiting behavior when the duration of the removal step was changed, demonstrated in Figure 2. In order to prove that the ALE recipe obeys the fluorination and ligand exchange mechanism similar to thermal ALE, XPS spectra were utilized at different points of the cycle. During surface modification, a significant Al-F peak emerges, indicating the formation of AlF3. During removal, the peak reduces in intensity, indicating the formation of volatile AlCl3. The spectra are displayed in Figure 3. This ALE approach also achieves surface planarization, leading to a 21% roughness reduction as seen in Figure 4 for AlN.

References:

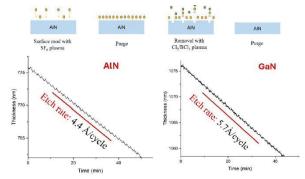


Figure 1: ALE cycle and etch rates for AlN and GaN

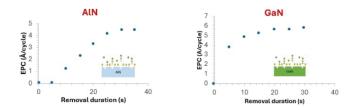


Figure 2: Removal step saturation curves for AlN and GaN displaying self-limiting behavior

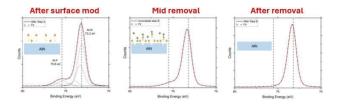


Figure 3: XPS spectra demonstrating fluorination and ligand exchange mechanism

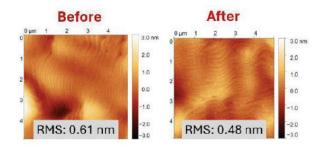


Figure 4: Surface morphology before and after etching for AlN

- U. Mishra, P. Parikh, and Y.-F. Wu, "Algan/gan hemts-an overview of device operation and applications," Proceedings of the IEEE 90, 1022–1031 (2002).
- 2 E. A. Jones, F. F. Wang, and D. Costinett, "Review of commercial gan power devices and gan-based converter design challenges," IEEE Journal of Emerging and Selected Topics in Power Electronics 4, 707–719 (2016).
- 3 A. L. Hickman, R. Chaudhuri, S. J. Bader, K. Nomoto, L.

- Li, J. C. M. Hwang, H. Grace Xing, and D. Jena, "Next generation electronics on the ultrawide-bandgap aluminum nitride platform," Semiconductor Science and Technology 36, 044001 (2021).
- 4S . Nakamura and M. R. Krames, "History of gallium–nitride-based light-emitting diodes for illumination," Proceedings of the IEEE 101, 2211–2220 (2013).
- 5 C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics," New Journal of Physics 14 (2012).
- 6 T. Imada, M. Kanamura, and T. Kikkawa, "Enhancement-mode gan mis-hemts for power supplies," in The 2010 International Power Electronics Conference ECCE ASIA (2010) pp. 1027–1033.
- 7 H. W. Then, M. Radosavljevic, Q. Yu, A. Latorre-Rey, H. Vora, S. Bader, I. Momson, D. Thomson, M. Beumer, P. Koirala, J. Peck, A. Oni, T. Hoff, R. Jordan, T. Michaelos, N. Nair, P. Nordeen, A. Vyatskikh, I. Ban, A. Zubair, S. Rami, and P. Fischer, "Enhancement-mode
- 3 00-mm gan-on-si(111) with integrated si cmos for future mm-wave rf applications," IEEE Microwave and Wireless Technology Letters 33, 835–838 (2023).
- 8 H. Lee, H. Ryu, J. Kang, and W. Zhu, "High temperature operation of e-mode and d- mode algan/gan mis-hemts with recessed gates," IEEE Journal of the Electron Devices Society 11, 167–173 (2023).
- 9 T.-H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, and S. Rajan, "Interface charge engineering for enhancement-mode gan mishemts," IEEE Electron Device Letters 35, 312–314 (2014).
- T. Palacios, C.-S. Suh, A. Chakraborty, S. Keller, S. DenBaars, and U. Mishra, "High- performance e-mode algan/gan hemts," IEEE Electron Device Letters 27, 428–430 (2006).
- 11 T.-Y. Yang, H.-Y. Huang, Y.-K. Liang, J.-S. Wu, M.-Y. Kuo, K.-P. Chang, H.-T. Hsu, and E.-Y. Chang, "A normally-off gan mis-hemt fabricated using atomic layer etching to improve device performance uniformity for high power applications," IEEE Electron Device Letters 43, 1629–1632 (2022).
- 12 J. Guo, K. Wei, S. Zhang, X. He, Y. Zhang, R. Zhang, J. Wang, K. Wang, S. Huang, Y. Zheng, X. Wang, and X. Liu, "Low damage atomic layer etching technology for gate recessed fabrication." Vacuum 217, 112591 (2023).
- 13 K. J. Kanarik, S. Tan, and R. A. Gottscho, "Atomic layer etching: Rethinking the art of etch," The Journal of Physical Chemistry Letters 9, 4814–4821 (2018).
- 14 K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. Gottscho, "Overview of atomic layer etching in the semiconductor industry," Journal of Vacuum Science Technology A 33, 020802 (2015).