Cornell NanoScale Facility
2022-2023 Research Accomplishments

CNF Lester B. Knight Director: Jeeyoung Judy Cha

CNF Director of Operations: Ronald Olson

Cornell NanoScale Facility (CNF) is a member of the National Nanotechnology Coordinated Infrastructure (www.nnci.net) and is supported by the National Science Foundation under Grant No. NNCI-2025233, the New York State Office of Science, Technology and Academic Research, Cornell University, Industry, and our Users.

The 2022-2023 CNF Research Accomplishments are also available on the web in full color: http://cnf.cornell.edu/publications/research_accomplishments

© 2023
2022-2023 CNF Research Accomplishments

TABLE of CONTENTS

Technical Reports by Section .. pages ii-v
Photography Credits ... page v
Directors’ Introduction .. pages vi-viii
A Selection of 2022 CNF Research-Related Patents, Presentations, and Publications .. pages ix-xxii
2022-2023 CNF Research Accomplishments pages 2-174
Index ... pages 176-180

BIOLOGICAL APPLICATIONS, 2-27

- Silicon Nitride Cantilevers for Muscle Myofibril Force Measurements .. 2
- High Throughput RF Bio Sensors ... 4
- Quartz Cylinder Fabrication for Torque Measurement in the Single-Molecule Level 6
- Building Microfluidics Devices to Study Zinc Metal Homeostasis in E. coli Communities 8
- Development of 3D Microfluidic Platform for Dynamic Compression of Tumor Spheroids 10
- Microfabrication of Sample Holders for Cryogenic Small Angle X-Ray Scattering and Flow Cells for Fluorescence Measurements of Ligand Diffusion in Protein Crystals .. 12
- Nanoscribe 3D Printing of Versatile Microfluidic Mixers for Experiments with Biomolecules 14
- Metasurface-Enhanced Infrared Spectroscopy for the Measurement of Live Cells 16
- Ultra-Wideband Impedance Spectroscopy of a Live Cell ... 18
- Microfluidic Devices for High-Throughput Directed Evolution of Microbes for Rare Earth Element Purifications .. 20
- Scalable Continuous Flow Electroporation Platform ... 22
- Investigating the Effect of the Tumor Microenvironment on Metastatic Progression Using Micro and Nano-Scale Tools ... 24
- Fabrication of a Nanofluidic Fabry-Perot Cavity ... 26

CHEMISTRY, 28-37

- Manipulation of Surface-Tethered Helical Polypeptide-Based Nanostructures with Localized Chemical Functionalities .. 28
- Sequence-Defined Polypeptoid CARs for E-Beam and EUV Lithography .. 30
- Micro-Etched Sorbent SPME Sheets for High Throughput, Trace-Level Analysis of “Smoke Taint” Compounds in Grapes and Wines ... 32
Identifying the Occurrence and Sources of Per- and Polyfluoroalkyl Substances in Photolithography Wastewater ... 34
Scalable Defect Engineering in Metal-Organic Frameworks via High-Concentration Self-Assembly Utilizing Pre-Assembled Cluster Precursors ... 36

ELECTRONICS, 38-57
A Systematic Study of How Different Phases of Niobium Nitride (NbₓN) React to Xenon Difluoride (XeF₂) Undercut Etch ... 38
Design and Implementation of an AlScN-Based FeMEMS Multiplier for In-Memory Computing Applications ... 40
Fabrication and Manipulation of Micro-Scale Opto-Electrically Transduced Electrodes (MOTEs) for Electrochemical and Neural Activity Measurements ... 42
Cross-Plane Thermal Conductivity of h-BN Thin Films Grown by Pulsed Laser Deposition ... 44
First Demonstration of AlBN/GaN High Electron Mobility Transistors ... 46
Low Contact Resistance Non-Alloyed Contacts to (010) β-Ga₂O₃ for kV Radio Frequency Applications ... 48
High Frequency Sensors and Actuators for Ultrasonic Imaging and Sensing ... 50
Developing a Passivation-First Recessed T-Gate Procedure for AlN/GaN/AlN HEMTs ... 52
Redistribution Layers on Glass Wafers ... 54
D-Band Filters and Splitters Based on SiC Substrate-Integrated Waveguides ... 56

MATERIALS, 58-93
Electrical Interconnects Based on Delafossite Thin Films ... 58
Etching of Topological Metals for Interconnect ... 60
Palladium Thin Films for Hydrogen-Driven Actuation and Liquid Crystal Sensing in Microrobotics ... 62
In-situ and Ex-situ Si Doping of β-Ga₂O₃ ... 64
The Effect of Nitrogen on the Stability of the β Phase in W Thin Films ... 66
Reactive Ion Etching (RIE) Reveals Biphasic Self-Assembled Mesostructures in Block Copolymer Thin Films ... 68
Low Loss Superconducting LC Resonator for Strong Coupling with Magnons ... 70
Ordering of Liquid Crystals on Photocatalytic Titania Surfaces ... 72
Investigation of Dry Chemical Actuators using Palladium and Palladium-Gold Thin Films ... 74
Auto-Fluorescent Polymer Brushes for Glucose Detection ... 76
Fluorination Effect on Anti-Penetration Performance of Polystyrene-Block-Poly(vinylmethylosiloxane). ... 78
Design, Synthesis, and Multiscale Structural Investigation of Polymer-Grafted Nanoparticles (PGNs) for Application in Pyrolysis and Self-Assembly Processes ... 80
Imaging the TaS₂ Charge Density Wave Transition in Real-Space with Electron Microscopy ... 82
Photolithographic Patterning of Alignment Fiducials for X-Ray Nano-Diffraction ... 84
Quasi-2D Materials for Ultra-Low Resistance Electrical Interconnects ... 86
<table>
<thead>
<tr>
<th>MECHANICAL DEVICES, 94-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic-Field Driven By-Stable Switching of Magnetic Cantilevers/Beams via Microscale Magnetic Controls</td>
</tr>
<tr>
<td>Fabrication of Micro Scale Triboelectric Microphone</td>
</tr>
<tr>
<td>Programmable Microscopic Magnetic Self-Assembly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPTICS & OPTO-ELECTRONICS, 100-115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodically Poled Lithium Niobate for Visible Light Generation</td>
</tr>
<tr>
<td>Full-Spectrum Visible Electro-Optic Modulator</td>
</tr>
<tr>
<td>Monolithic Ultrabroadband Multispectral Color Filter Array</td>
</tr>
<tr>
<td>High-Quality-Factor SiN Ring Resonator of 12 GHz Repetition Rate</td>
</tr>
<tr>
<td>Ultrathin Infrared Photonic Devices Based on Semiconductor-Metasurfaces</td>
</tr>
<tr>
<td>HfO₂-Based Platform for High Index Contrast Visible and UV Integrated Photonics</td>
</tr>
<tr>
<td>Metamaterial Spectrometer: A Low SWaP, Robust, High Performance Hyperspectral Sensor for Land and Atmospheric Remote Sensing</td>
</tr>
<tr>
<td>Distributed Bragg Reflectors Fabricated by PECVD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHYSICS & NANO-STRUCTURE PHYSICS, 116-159</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange Bias between van der Waals Materials: Tilted Magnetic States and Field-Free Spin-Orbit-Torque Switching</td>
</tr>
<tr>
<td>Physics of nm-Scale Superconductors and Magnets</td>
</tr>
<tr>
<td>Thermally-Generated Spin Current in the Topological Insulator Bi₂Se₃</td>
</tr>
<tr>
<td>Fabricating Micron-Sized Skyrmion-Spintronic Devices</td>
</tr>
<tr>
<td>Surface Acoustic Waves in Magnetic Materials</td>
</tr>
<tr>
<td>Nanofabricated Superconducting Devices for Vortex Dynamics and Qubits</td>
</tr>
<tr>
<td>Fabrication of Nanoscale Josephson Junctions for Quantum Coherent Superconducting Circuits</td>
</tr>
<tr>
<td>Interfacial Optical Sensing of Ferroelectricity in Freestanding Perovskite Oxide by Using Monolayer Transition Metal Dichalcogenides</td>
</tr>
<tr>
<td>Mechanically Driven Electron Spins with a Diamond Thin-Film Bulk Acoustic Resonator</td>
</tr>
<tr>
<td>Room Temperature Optically Detected Magnetic Resonance of Single Spins in GaN</td>
</tr>
<tr>
<td>Coherent Acoustic Orbital Control of Diamond NV Center Excited States</td>
</tr>
<tr>
<td>Nanostructure Integrated Silicon Vacancy in 4H-Silicon Carbide</td>
</tr>
<tr>
<td>Exciton Density Waves in Coulomb-Coupled Dual Moiré Lattices</td>
</tr>
<tr>
<td>Gate-Tunable Heavy Fermions in a Moiré Kondo Lattice</td>
</tr>
<tr>
<td>Thin-Film Deposition for Surface Characterization Studies for Superconducting RF Cavity Application</td>
</tr>
</tbody>
</table>
Lithography for *in situ* Cryogenic STEM .. 146

Novel Superconducting Microwave Devices from 2D Materials 148

Manufacturing TiO₂ Pillar Arrays and SiN Bullseye Cavities 150

Fabrication of Fluxonium-Like Qubits 152

Serpentine Heater Lines 154

Characterization of Fluxonium Qubits 156

Nanoscribe Advanced Patterning Techniques for Two-Photon 2D and 3D Structures 158

PROCESS & CHARACTERIZATION, 160-174

Wafer-Scale Fabrication of Single Domain Magnetic Nanostructures 160

Electrical Characterization of Dielectric Films 162

Nanoimprint Process Optimization for PMMA 164

Wafer Scale Piezoelectric Transformers 166

Exploring the Relevance of Mucin-Induced Extracellular Vesicles in Therapeutics and Cancer 168

Fabrication and Characterization Support for CCMR 170

Fabrication and RF Evaluations of 5G Antennas on Flexible Substrates 172

Wolfspeed Development of T-Gate Structure by E-Beam Lithography 174

INDEX, 176-180

PHOTOGRAPHY CREDITS

This year’s cover image is from the report “Physics of nm-Scale Superconductors and Magnets”; CNF Project 598-96, Principal Investigator: Daniel C. Ralph; User: Xiaoxi Huang; Affiliation: Department of Physics, Cornell University — and was used with their permission. The full report starts on page 118.

Photography credits for pages vii and viii are as follows: furnace, Charles Harrington Photography; CNF REU Before, Melanie-Claire Mallison; CNF REU After, Ron Olson; Fischbach and Ober, Cornell University Photography; CNF Annual Meeting Student Award Winners with CNF Directors and Funding Corporate Sponsors, Hodges Photography.

COMMENTS, FEEDBACK, AND SUGGESTIONS ARE ALWAYS WELCOME.

FEEL FREE TO USE OUR ONLINE USER COMMENT FORM AT HTTPS://WWW.CNFUSERS.CORNELL.EDU/USER_FEEDBACK
2022-2023 CNF Research Accomplishments

DIRECTORS’ INTRODUCTION

The Cornell NanoScale Science and Technology Facility (CNF) takes pride in presenting the research achievements of our users and research groups who utilize the extensive array of resources provided by the CNF. We appreciate all the contributors who provided input to this publication. The Research Accomplishments showcases excellence in research while underscoring the diverse array of cutting-edge advancements spanning various fields of science and technology. Together with the spotlight on 87 featured research reports, CNF-related patents, presentations, and publications (totaling nearly 391 in 2022) have been included.

NNCI

The CNF is excited to maintain its membership within the National Nanotechnology Coordinated Infrastructure (NNCI), supported by the National Science Foundation (NSF) and the New York State NYSTAR/ESD Matching Grant Program. This ongoing relationship plays a pivotal role in sustaining CNF’s position as a leader in nanofabrication. Cornell proudly stands as one of 16 collaborative sites within this national user consortium, dedicated to delivering cutting-edge fabrication and characterization tools to a diverse range of users from both academia and industry. Earlier this year the CNF submitted “The Year 8 Annual Report” and actively engaged in a successful virtual, reverse site visit: reaffirming our commitment to our cooperative agreement with the NNCI.

CNF continues to take the lead in establishing the NYS Nanotechnology Network (NNN). Building on the success of our 1st student showcase in May of 2022, the 2nd Annual NNN Student Showcase/Career Fair highlighting “Advances in the Semiconductor Industry” was held at the University at Albany on April 15, 2023. Binghamton University hosted the 3rd NNN symposium at the Albany Nanotech Complex in conjunction with the 34th Annual Electronics Packaging Symposium at the beginning of September 2023. With the CHIPS and Science Act, the pending Micron fabrication complex in Syracuse, and associated NYS initiatives, workforce development has assumed a stronger impactful presence in the region, further emphasizing the role of the NNN in uniting regional industry and universities.

NNCI STAFF AWARDS

Congratulations to Karlis Musa who was recently honored with a national award from the NNCI. Annually, the NNCI acknowledges the efforts of NNCI staff who provide exceptional service and support to network users in the categories of Technical Staff, Education and Outreach, and User Support. Karlis was recognized by the NNCI in the User Support category. This award is given to site staff who provide excellent service and support to all network users. Karlis will receive a plaque, acknowledgement at the NNCI Annual Conference and will be recognized on the NNCI website and in the NNCI yearly report to the NSF. We are proud of Karlis’ efforts and his contributions.

The exceptional staff at the CNF have been consistently recognized with NNCI Outstanding Staff Member Awards. Past award recipients include Chris Alpha – Technical Staff (2018), Tom Pennell – Education and Outreach (2020), Phil infante – Technical staff (2021) and Mike Skvarla – User Support (2021), Melanie-Claire Mallison – Education and Outreach (2022) and Aaron Windsor (2022) – User Support.

NEW TOOLS AND CAPABILITIES

New, more advanced capabilities are constantly being added at CNF to improve the user experience. Acquisition of new tools is guided by discussions with the advisory committees and Cornell faculty. CNF is in the process of replacing its 20-year-old lab management software with NEMO, an intuitive and easy to use laboratory logistics software suite designed by NIST. NEMO manages tool reservations, enables and disables tools, tracks usage, and provides billing of user charges.

A cutting-edge superconducting film deposition system has been ordered. This specialized AJA system is
designed specifically for quantum technology. We remain optimistic the delays presented by persistent supply chain issues will be resolved and the scheduled delivery date in spring of 2024 will be met.

Furnace tube A4 and A3 have been meticulously reconfigured to deposit LPCVD silicon carbide and high temperature LPCVD silicon nitride respectively. These upgrades are pivotal steps toward enhancing our capabilities and positioning ourselves at the forefront of groundbreaking research and innovation.

ME COMMONS NORDTECH

This past month Deputy Secretary of Defense Kathleen Hicks announced funding for the establishment of eight Microelectronics Commons regional innovation hubs. Cornell proudly stands as a founding member of The Northeast Regional Defense Technology Hub (NORDTECH). NORDTECH represents a regional coalition comprised of public and private sector experts in the Microelectronics Commons region in and around New York State. Within this alliance the CNF serves a pivotal role supporting a wide range of research and development activities. In addition, the CNF takes pride in its dedication to training and empowering the next generation workforce. This collaborative program will facilitate the integration of Department of Defense (DoD)-selected research and development projects. Harnessing the collective expertise provided by diverse stakeholders committed to fostering innovation is vital to the successful advancements of the field of nanotechnology. This initiative is expected to significantly expand the CNF’s state-of-the-art micro-nanotechnology equipment as well as its user base while propelling the facility into the forefront of cutting-edge advancements in microelectronics and nanotechnology.

FUTURE OF NNCI

Given the conclusion of the current National Nanotechnology Coordinated Infrastructure (NNCI) award cycle in 2025, the nanotechnology community is looking ahead to the future and the next nanotechnology infrastructure. In September the CNF actively participated in the 2023 Workshop on Nanotechnology Infrastructure of the Future. The workshop was held in Washington, D.C., as well as online. Stanford led this interactive workshop. The breakout sessions helped capture input from attendees on various topics to prepare for the future. The input from everyone will assist with the development of a public-facing white paper including recommendations for a path forward for presentation to US government agencies.

EDUCATION AND OUTREACH

The CNF supports a broad range of educational and outreach (E&O) activities at all levels including K-12, higher education, professional and public. Last year we had over 2,600 participants in workforce and outreach activities in addition to the distribution of 100,000 copies of Nanooze. We have been working with Tompkins Cortland Community College (TC3) to establish a Micro-Credential in the semiconductor field and collaborating on a few NY State Workforce Development proposals. We continue to collaborate with Micron on various Workforce Development activities including the Northeast University Semiconductor Network and Micron “Chip Camps”. The “chip camps” are designed to introduce middle school students to the concept of microtechnology, and possible careers in the field. In 2023 we held three separate camps with > 300 students from Syracuse regional school districts. Tom
Pennell piloted ATLAS (Accelerated Training for Labor Advancement in Semiconductors), a program in cooperation with the Tompkins-Seneca-Tioga Board of Cooperative Educational Services (TST BOCES) New Visions Engineering to further workforce development educational opportunities. This program provided students with a comprehensive in person/hands on training in the key areas of the cleanroom semiconductor environment.

Since 1991, CNF has hosted an NSF-funded Research Experiences for Undergraduates (REU) Program — an informative ten-week summer research experience for a diverse group of talented undergraduates. We’ve since added two 2nd-year programs in collaboration with the National Institute for Materials Science (NIMS) in Japan — the CNF International Research Experiences for Undergraduates (CNF iREU) Program and the CNF International Research Experiences for Graduates (CNF iREG) Program. For the CNF iREU, we send 8-10 NNCI REU interns to Japan for a summer of international research and in return, for the CNF iREG, NIMS sends several Japanese graduate students to the NNCI sites. In 2023, the CNF hosted seven CNF REU interns, plus one CNF iREG. And eight NNCI REU participated in the CNF iREU Program. All their final reports can be found online at https://cnf.cornell.edu/education — along with websites for all the education and outreach activities mentioned above!

LEADERSHIP LEGACIES

The Directors extend their genuine gratitude to Prof. Christopher Ober, the 8th Lester B. Knight Director of the CNF (2016-2023) for his exceptional leadership in support of the CNF. Chris’ unwavering commitment to excellence, visionary guidance, and exceptional ability to strategically position the CNF for the future has left an indelible mark on both the NNCI and the CNF itself. His dedication and innovation has not only elevated the CNF to new heights but has contributed significantly to the advancement of nanoscience and technology on a broader scale. Chris is leaving a legacy for future generations. We wish Chris the best and look forward to seeing him around campus.

We would also like to thank Prof. Claudia Fischbach-Teschl, Associate Director (2020-2023), for her support and guidance during her tenure. Claudia’s insight and expertise further enhanced the CNF’s support of Life Sciences. Her collaborative nature paired with her dedication and leadership greatly enhanced the CNF mission.

Thank you, Chris, and Claudia, we wish you both the best in your future endeavors. Your daily presence will be missed by all at the CNF!
2022-2023 CNF Research Accomplishments

A SELECTION OF 2022 CNF-RESEARCH-RELATED PATENTS, PRESENTATIONS, AND PUBLICATIONS

“A biofabricated conduit structure to reconstitute lymphatic valve formation in 3D”; Lu, R., Lee, E., Biomedical Engineering Society (BMES), San Antonio, TX (Oral presentation), 2022 (2022, Cornell University).

“A hybrid bio-electrical device used to power Shewanella oneidensis metabolism using electricity and formate”; Barstow, B., F. Salimjazi, D. Specht, Invention, Docket 10492, Status: Unfiled, Disclosure Date 9/26/22 (2022, Cornell University).

“A lymphatic tissue engineered model to reconstitute lymphatic drainage and lymphphedema”; Lee, E., 9th World Congress of Biomechanics (WCB), Session: Biomechanics of Vascular and Lymphatic Tissue Engineering, Taiwan (Oral presentation), JULY 14, 2022 (2022, Cornell University).

“Additively manufactured porous ceramic electrospray emitters”; Chamiieh, S., E. Petro, S. Sobhani, Invention, Docket 10526, Status: Filed - by Cornell, Disclosure Date 10/25/22 (2022, Cornell).

“Aperture Restoration of Single Axis Reflective Optical Scanners”; Hebert, E., C. Xu, Invention, Docket 10360, Status: Filed - by Cornell, Disclosure Date 5/5/22 (2022, Cornell University).

“Characterization of left-handed metamaterial ring resonator coupled to transmon qubits”; McBroom, T. et al. – Contributed talk, American Physical Society March Meeting (virtual due to COVID), March 16, 2022 (2022, Syracuse University).

“Characterization of the Capacitance of Small Josephson Junctions from dc SQUID Resonances”; Cole, B.; et al. – Contributed talk, American Physical Society March Meeting (virtual due to COVID), March 14, 2022 (2022, Syracuse University).

“Charge-parity qubits based on concatenation of \(\pi \)-periodic Josephson elements: Part 1”; Liu, Y., et al. – Contributed talk, American Physical Society March Meeting (virtual due to COVID), March 17, 2022 (2022, Syracuse University).

“Charge-parity qubits based on concatenation of \(\pi \)-periodic Josephson elements: Part 2”; Dodge, K., et al. – Contributed talk, American Physical Society March Meeting (virtual due to COVID), March 17, 2022 (2022, Syracuse University).

“Correlated orbitals yield high-mobility, back-end-of-line compatible p-type oxide semiconductor”; Park, J., C. Parzyck, D. Schlom, K. Shen, J. Sun, Invention, Docket 10272, Status: Filed - by Cornell, Disclosure Date 3/7/22 (2022, Cornell University).

“Cryogenic 4D-STEM of the charge density wave transition in Ta2S3 with in situ electrical biasing”; Hart, J. (contributed talk, Best talk award), MRS Fall Meeting in Boston (11/2022) (2022, Cornell).

“Cycle-Consistent Spatial Transforming Autoencoder”; Agar, J.Y., Guo, M., Mahoney, D., Muller, S., Qin, X. Zhang, Invention, Docket 10560, Status: Unfiled, Disclosure Date 11/21/22 (2022, Cornell).

“Doxorubicin Reduces Bone Matrix Formation by Altering Mesenchymal Stromal Cell Phenotype”; Onisssema Karimu, S., A. Shimpi, N. Sempertegui, C. Fischbach, Biomedical Engineering Society Annual Meeting 2022, October 2022 (2022, Cornell University).

“Engineered Extracellular Matrix (ECM) Models”; Fischbach, C., Biomedical Engineering Department at the National University of Singapore, June 7, 2022 (2022, Cornell University).

“Engineered Extracellular Matrix (ECM) Models”; Fischbach, C., IFATS, Fort Lauderdale, FL, November 4-6 2022 (2022, Cornell University).

“Extremely fast-charge lithium batteries using improved InLi anode”; Archer, L., S. Jin, Invention, Docket 10454, Status: Filed - Attorney Instructed to File, Disclosure Date 8/22/22 (2022, Cornell).

“Gallium oxide photonics and nonlinear optics”; Jena, D., G. Khalsa, B. Liu, H. Nair, V. Protasenko, Y. Zhang, Invention, Docket 10253, Status: Filed - by Cornell, Disclosure Date 2/17/22 (2022, Cornell University)

“Heat Transfer Characteristics of Turbulent Flow of Supercritical Carbon Dioxide (Sco2) in a Microchannel”; Manda, U. A.

“High pressure saturated flow boiling of CO2 at the micro scale”;

“Integrated Photonic Devices with Inverse Weak Value Amplification for Precision Metrology”; Song, M., University of Rochester, 2022 Ph.D.Thesis (2022, University of Rochester).

“Measuring sarcomere dynamics following immunofluorescent labelling of α-actinin and myomesin structural proteins”; Sekhon, A., Herzog, W., North American Congress on Biomechanics (NACOB), Ottawa ON, Aug 21-25, 2022 (2022, University of Calgary).

“Methods for improving rate capability of lithium sulfur batteries”; Joo, Y., Invention, Docket 10535, Status: Unfiled, Disclosure Date 11/1/22 (2022, Cornell University).

“Mitigation of quasiparticle poisoning in superconducting qubits using normal metal backside metallization”; Iaia, V., et al. – Contributed talk, American Physical Society March Meeting (virtual due to COVID), March 16, 2022 (2022, Syracuse University).

“Phase Transition of MoTe2 Controlled in van der Waals Heterostructure Nanoelectromechanical Systems”; Ye, F., A. Islam, Y. Wang, J. Guo, P.X.-L. Feng, small, 02 December 2022 https://doi.org/10.1002/smll.202205327 (2022, Case Western Reserve University).

“Phonon downconversion to suppress correlated errors in superconducting qubits”; iaia, V.; ku, j.; ballard, a.; larson, c.p.; yelon, e.; liu, c.h.; patel, s.; mcdermott, r.; plourde, b.l.t., Nature Communications, OCT 28, Vol 13, Issue 1, 6425, http://dx.doi.org/10.1038/s41467-022-33997-0 (2022, Syracuse University).

“Quantum Control of Spin and Orbital States with a Diamond Mechanical Resonator”; Fuchs, G., Photonics West (virtual) 2022 (2022, Cornell University).

“Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer”; Beeghly, G.F.; Amofa, K.Y.; Fischbach, C.; Kumar, S., Annual Review of Biomedical Engineering, Vol 24, Page(s) 29-59 (2022, Cornell University).

“Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement”; Ye, F.; Inman, J.T.; Hong, Y.; Hall, P.M.; Wang, M.D., Nature Communications, Vol 13, Issue 1, Page(s) 1-10 (2022, Cornell University).

“Smooth and homogenous Nb3Sn superconductors, method of making same, and use for superconducting radio-frequency accelerators” ; Liepe, M., Z. Sun, Invention, Docket 10495, Status: Closed - In Process, Disclosure Date 9/27/22 (2022, Cornell University).

“Solution deposition of silanes films on thermoplastic polyurethane blend optical fibers for enhancing silicon cladding adhesion in wearable stretchable optical waveguide strain sensors”; Miller, R., R. Shepherd, Invention, Docket 10223, Status: Filed - Attorney Instructed to File, Disclosure Date 1/26/22 (2022, Cornell University).

“Spatial Total RNA-Sequencing (spTotal)”; Cosgrove, B., I. De Vlaminck, M. Mantri, D. McKellar, H. Shi, Invention, Docket 10252, Status: Filed - by Cornell, Disclosure Date 2/17/22 (2022, Cornell University).

“Squish and squeeze – Nuclear mechanobiology in cell migration and muscle disease”; Lammerding, J.; Invited seminar, Cellular, and Developmental Biology (MCDB) Program, Student selected speaker. The Ohio State University. Columbus, OH (October 25, 2022) (2022, Cornell University).

“Superconducting Qubit Control with Single Flux Quantum Pulses in a Multi-chip Module”; Ballard, A., et al. – Contributed talk, American Physical Society March Meeting (virtual due to COVID), March 14, 2022 (2022, Syracuse University).

“Waveguides for Use in Sensors or Displays”; Bai, H., R. Huang, S. Li, R. Shepherd, H. Zhao, Patent Application, Docket # 7179-08-HK, Hong Kong, Filed 8/31/22, 42022059320 (2022, Cornell University).

