Nanofabricated Superconducting Devices for Vortex Dynamics and Qubits

CNF Project Number: 1314-05
Principal Investigator(s): Britton L.T. Plourde
User(s): Kenneth Dodge, Jaseung Ku, Yebin Liu, Michael Senatore

Affiliation(s): Department of Physics, Syracuse University
Primary Source(s) of Research Funding: Army Research Office
Contact: bplourde@syr.edu, krdodgej@syr.edu, jku102@syr.edu, yliu166@syr.edu, masenato@syr.edu
Website: http://plourdelab.syr.edu
Primary CNF Tools Used: ASML photostepper, JEOL 9500, Plasma-Therm 770

Abstract:
We fabricate superconducting microwave devices for studying the dynamics of vortices at low temperatures and for forming novel qubits. Vortices are quantized bundles of magnetic flux that thread many different superconductors over a particular range of applied magnetic field. By using disordered superconducting thin films for high kinetic inductance wires, we are able to build structures that can lead to qubits that are protected against decoherence.

Summary of Research:
Superconducting microwave circuits play an important role in quantum information processing. Circuits composed of Josephson junctions and capacitors with superconducting electrodes can serve as qubits, the fundamental element of a quantum computing architecture. Various loss mechanisms limit the ultimate performance of these devices, including trapped magnetic flux vortices. Vortices can be trapped in the superconducting electrodes when background magnetic fields are present and contribute dissipation when driven with microwave currents [1]. Thus, techniques for controlling the trapping of vortices are critical to the development of large-scale quantum information processors with superconducting circuits. In addition, highly disordered superconducting films, including granular Al, can be used to form wires with a compact high kinetic inductance that can be combined with Al-AlOx-Al Josephson junctions to form the central element for novel qubit designs that are protected against decoherence [2,3].

We fabricate our microwave resonators from various superconducting films, including aluminum, deposited onto silicon wafers in vacuum systems at Syracuse University. We define the patterns on the ASML stepper and transfer them into the films with a combination of reactive ion etching and liftoff processing. For defining Josephson junctions, we use the JEOL 9500 along with a dedicated deposition system at Syracuse University. We measure these circuits at temperatures of 100 mK and below in our lab at Syracuse University.

References:
2018-2019 Research Accomplishments

Physics & Nanostructure Physics

Figure 1: Scanning electron micrograph of Al-AlO$_x$-Al Josephson junctions in protected qubit design.

Figure 2: Scanning electron micrograph closeup image of Al-AlO$_x$-Al Josephson junction on protected qubit element.

Figure 3: Scanning electron micrograph of Nb ground connection over SiO$_x$ spacer on protected qubit element.

Figure 4: Measurement of magnetic flux modulation of microwave resonance from protected qubit element.