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Abstract:

Microlayer evaporation is one of the major heat transfer mechanisms of boiling. In our work, the microlayer 
thin film is visualized in situ in a vapor bubble during pool boiling. Contrary to current understanding, 
bubbles originate on hydrophilic and silane-coated hydrophobic surfaces without a three-phase contact line, 
i.e. the microlayer completely covers the bubble base. The occurrence of such a wetted bubble base is found 
to be dependent on the liquid-solid interaction, which is validated by molecular dynamics simulations of 
nucleation of liquid argon on hydrophilic and/or single-layer hydrophobic atoms on hydrophilic surfaces. 
The work reported here is part of a journal article which is currently under review.

Summary of Research:

Figure 1, top: Microlayer underneath a 
vapor bubble in pool boiling. Figure 2, 
bottom: Sample surface with metal layers 
to absorb laser.

Microlayer is a thin liquid film trapped underneath a vapor bubble next to three-
phase contact line. The base of the bubble can be divided into three regions: 
nanoscale non-evaporating film region, microscale evaporating film region, 
and millimeter scale bulk meniscus (Figure 1). Extremely high heat flux occurs 
in the microlayer region due to its low thermal resistance, which is proportional 
to liquid layer thickness. Microlayer evaporation serves as one of the major heat 
transfer mechanism. Better understanding of the microlayer has led to novel 
approaches for boiling heat transfer enhancement: microstructures fabricated 
on pool boiling surface causes early evaporation of microlayer, resulting in ~ 
120% enhancement in the critical heat flux [1]. In our work, we studied origin 
of microlayer by in situ visualizing the microlayer in a vapor bubble in pool 
boiling, and performing molecular dynamics simulations of bubble nucleation.

We used laser heating to create a vapor bubble on a surface submerged in a pool 
of deionized (DI) water at room temperature. The surface consists of several 
metal layers for laser heating technology (Figure 2):a 40 nm thick tungsten 
was deposited on a glass substrate to absorb the laser and heat the surface; a 1 
µm thick PECVD SiO2 was deposited to serve as hydrophilic surface (contact 
angle: 33.4 ± 2.7°); two 10 nm thick Ti layers were deposited acting as adhesion 
layer. To form the vapor bubble, a blue CW laser beam (wavelength of 447 
± 5 nm) was introduced into an inverted microscope, passed through a 50× 
objective, and focused on the sample to generate a highly localized heating area 
corresponding to an equivalent beam diameter of ~ 15 µm. The same objective 
was used to image the bubble which was illuminated from above with a 632 
nm HeNe laser. This configuration creates a bubble image with a dark annulus 
ring as light has to refract across multiple interfaces in that region. A high-speed 
camera was used to record the bubble formation process. 
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Figure 4: Bubble with completely wetted base in 
molecular dynamics simulation.

The microlayer is in situ visualized using this setup because fringes would 
be observed in microlayer region. These fringes were observed due to 
thin film interference of monochromatic incident light with partially 
reflected light within the thin liquid microlayer. As the generated dark 
and bright fringes correspond to constructive and destructive interference 
respectively, these fringes are separated by an optical path difference 
which is half wavelength, and the position of the fringes can be used to 
build microlayer profile.

In our experiments, the fringes are surprisingly seen throughout the 
bubble base on the surface, indicating that the microlayer liquid film 
covers entire bubble base and no three-phase contact line forms (Figure 3). 
In order to understand the physics behind the completely wetted bubble 
base, molecular dynamics simulations were performed in LAMMPS 
[2] software with liquid argon present between two walls. The upper 
wall was moved outward at a certain speed to decrease the pressure in 
the liquid and initiate nucleation. The lower wall was modeled as the 
hydrophilic surface by using a 12-2 Lennard Jones potential between the 
wall and argon atoms. Similar to the experiments, a liquid film is present 
between the bubble and the surface (Figure 4). Statistical analysis from 
molecular dynamics simulation shows that due to the strong interaction 
between the hydrophilic wall and argon atoms, high density liquid layers 
form near the wall, leading to significantly high pressure in that region. 
Thus, a bubble forms above these liquid layers as it is thermodynamically 
favorable to achieve lower pressures required for nucleation, resulting in 
a liquid film being present underneath the bubble. This mechanism can 
be amplified/weakened with different wall-liquid combinations, for e.g., 
interaction between SiO2 and water were much stronger as polar atoms 
are involved, leading to thicker high-density liquid water film that is 
measurable in experiments. However, the completely wetted bubble base 
will not likely be observed on weak interacted wall-liquid combinations 
(if either is non-polar).

In summary, we observed that the bubble, at its early growth stage, 
had a bubble base that is completely covered by the microlayer; similar 
observation was found in molecular dynamics simulations. This entirely 
wetted bubble base is due to the strong wall-liquid interactions, the 
thickness of microlayer is determined by the wall-liquid interactions.
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Figure 3: Image of a vapor bubble with completely 
wetted bubble base.




